Распределение генотипов не соответствует распределению харди вайнберга. Закон харди-вайнберга в решении генетических задач. II. Изучение нового материала

Знаменитый долгосрочный эксперимент Беляева по выведению одомашненных (а также агрессивных) лис продолжается и набирает обороты. Исследователи подключают все возможности, которые предоставляют сегодняшние исследовательские технологии. В 2018 году вышло несколько статей с результатами секвенирования геномной ДНК лис и РНК из тканей их мозга. Удалось выявить множество генов, вовлеченных в изменения и подвергшихся положительному отбору в разных линиях. Среди них оказались гены, имеющие отношение к гормональной регуляции, дифференцировке клеток нервного гребня, формированию межклеточных контактов и синаптической передаче сигналов в мозге, а также гены иммунитета.

Эксперимент по одомашниванию лис, который был начат в 1959 году Дмитрием Константиновичем Беляевым и Людмилой Николаевной Трут на звероферме Новосибирского академгородка Сибирского отделения АН СССР, широко известен сегодня не только среди биологов, но и среди непрофессиональной публики. О нем и его промежуточным результатах написано много популярных статей (см. ссылки в конце текста).

Эксперимент начался с формирования выборки серебристо-черных лисиц, взятых на ферме (лис там выращивали на шкуры для шуб и т. п.). Идея заключалась в том, чтобы воспроизвести на лисах тот же процесс одомашнивания, через который в прошлом прошли волки, давшие начало домашним собакам. С этой целью среди потомства от серебристо-черных лис стали проводить отбор лисят, демонстрировавших лояльность и дружелюбие по отношению к человеку.

Для проведения отбора была подобрана методика, позволявшая определить, в какой степени каждому лисенку свойственно проявление страха перед человеком или любопытство по отношению к человеку. Эта простая методика заключается в анализе поведения лис (в возрасте около 6 месяцев) на следующие ситуации:
1) экспериментатор стоит около закрытой клетки, не пытаясь привлечь внимание животного;
2) экспериментатор открывает дверцу клетки, стоит рядом, но не инициирует общение;
3) экспериментатор протягивает руку и пытается прикоснуться к разным частям тела животного;
4) экспериментатор закрывает дверцу клетки и спокойно стоит около клетки.

Видеозаписи испытания затем анализируют, чтобы оценить поведение животного по ряду критериев-признаков (см. R. M. Nelson et al., 2016. Genetics of Interactive Behavior in Silver Foxes (Vulpes vulpes )).

От наименее пугливых лисят получали потомство следующего поколения, а затем снова повторяли процедуру тестирования и отбора. Уже в пятом поколении начали появляться отдельные особи, которые демонстрировали влечение к общению с человеком, сравнимое с таковым у собак. Со временем таких становилось все больше, признак «добродушия» усиливался. Сейчас все лисы этой линии демонстрируют настолько по-собачьи преданное и игривое поведение (включая даже лай и «защиту» хозяина), что некоторых из них продают в качестве домашних животных.

Удивительным в этом эксперименте был не только поразительно быстрый отклик на отбор по поведению, но и те сопутствующие изменения, которые стали проявляться в фенотипе лис, подвергшихся отбору. Эти изменения касались признаков, на первый взгляд с поведением никак не связанных: на шкуре стали появляться белые и рыжие пятна, лисы стали более вариабельны по метрическим характеристикам (у некоторых животных наблюдалось укорочение длины морды, лап), у некоторых начал закручиваться хвост, появлялись нарушения прикуса, задержка отвердения ушного хряща, изменения цвета радужной оболочки глаз. Мало того, у лис начали происходить сбои в сезонности репродуктивного поведения, - важного для диких лис признака, гарантирующего появление щенков в наиболее благоприятный сезон года.

С учетом увеличения вариабельности по признакам фенотипа в условиях эксперимента, Беляев ввел понятие «дестабилизирующего отбора» - в противоположность более типичному для естественного эволюционного процесса «стабилизирующего отбора» (этот термин ввел в первой половине XX века И. И. Шмальгаузен), который, напротив, делает фенотип более устойчивым. Беляев допускал, что увеличение вариабельности, наблюдаемое в этом эксперименте, могло происходить и в процессе одомашнивания волков, и что это могло дать хороший старт для формирования всего того разнообразия пород среди собак, которое не может не удивлять с учетом того, что все они ведут начало от одного общего предка - волка, и началась эта диверсификация пород, по-видимому, не более 15 тысяч лет назад.

Следует добавить, что через некоторое время после начала эксперимента (а именно, с 1970 года) была добавлена и вторая линия лис. Их, напротив, отбирали на максимальную агрессивность и недоверие к людям. При том, что поведение лис в ответ на отбор изменилось соответствующим образом, часть внешних фенотипических признаков в этой линии стали конвергировать с соответствующими признаками в линии добродушных лис, хотя и не настолько заметно. При этом параллельно ведется и контрольная линия лис, в которой отбор не производится - и в этой линии никаких особенных отклонений от исходного фенотипа фермерских серебристо-черных лисиц не отмечается. Параллельное ведение трех линий позволяет проводить сравнительные анализы, эксперименты по скрещиванию, направленные на поиск ассоциированных с изменениями генетических локусов. Численность популяции каждой линии постоянно поддерживается на уровне около 200 особей. Организация эксперимента подразумевает принятие мер к избеганию чрезмерного инбридинга между животными (это могло бы привести к искажению результатов в силу повышения эффектов дрейфа генов и уменьшения жизнеспособности потомства).

Есть довольно много вариантов объяснения сопутствующих изменений в признаках, не связанных непосредственно с поведением. Например:
1) Эффекты соотбора сцепленных полиморфизмов (это механизм еще называют генетическим автостопом, см. Genetic hitchhiking).
2) Плейотропное действие отбираемых генов. В частности, есть гены, которые регулируют состояние хроматина (рабочее или нерабочее) при помощи метилирования ДНК или модификации гистонов, - такие гены могут изменять работу большого числа других генов. Аналогичное влияние ожидаемо для генов, вовлеченных в альтернативный сплайсинг или в передачу внутриклеточных сигналов.
3) Адаптивные компромиссы, которые выражаются в том, что прямой отбор в одних признаках косвенно создает новый вектор отбора и по другим признакам, функционально связанным с первыми в онтогенезе .
4) Случайное появление и сохранение новых признаков из-за повышения роли дрейфа генов (например, вследствие сравнительно небольшого размера популяций). Впрочем, это объяснение едва ли здесь имеет большой вес - ведь в контрольной линии никаких существенных изменений не наблюдалось.
5) Нельзя исключать и повышения общей частоты мутаций, обусловленной, например, закреплением под влиянием проводимого отбора мутации, снижающей точность репликации или репарации ДНК.

Беляев предложил свое оригинальное объяснение наблюдаемому феномену. Его гипотеза состояла в том, что интенсивный отбор по поведению закреплял множественные мутации, которые изменяют баланс гормонов в организме. Широко известно, что гормоны играют огромную роль в определении темперамента и эмоционального состояния как у людей, так и у животных. Эти мутации, вероятно, оказывают плейотропный эффект, влияя в том числе и на обеспечение процессов морфогенеза в ходе индивидуального развития. Например, широкий спектр влияния имеет система гормонов щитовидной железы. Возможно, эти мутации выводят из строя механизмы, обеспечивающие в норме устойчивость (канализированность) морфогенеза, приводя к эффекту дестабилизации фенотипа. В пользу этой гипотезы свидетельствует слабая наследуемость некоторых из перечисленных фенотипических отклонений. Щенки от одной пары лис получаются внешне, да и по характеру, очень разнородными.

Гипотеза предполагает, что закрепляемые в ходе отбора мутации затрагивают те гены, которые управляют созреванием клеток нервного гребня у позвоночных (см.: «Четвертый зародышевый листок» позвоночных зародился у низших хордовых , «Элементы», 04.02.2015). Эти клетки, дифференцируясь, во-первых, участвуют в формировании коры надпочечников, где вырабатываются гормоны типа адреналина, влияющие, в частности, на запуск и реализацию реакций страха у животных. Во-вторых, из нервного гребня также происходят клетки ушного хряща и некоторые кости черепа, включая челюстные, пигментные клетки в шкуре животного, клетки радужной оболочки, чувствительные клетки внутреннего уха. Логично, что одни и те же мутации в генах, управляющих развитием клеток нервного гребня, могут оказывать комплексное влияние на все эти признаки. В данном случае предполагается, что мутации приводят к затормаживанию дифференцировки или миграции клеток нервного гребня и недостатку их в тех тканях, где они должны в итоге работать. Попадая в разные сочетания при скрещиваниях отбираемых лис, эти мутации и порождают наблюдаемое разнообразие фенотипов.

Генетическая основа наблюдаемых изменений поведения лис была подтверждена при помощи экспериментов с пересадкой эмбрионов или подменой щенков между самками разных линий («злых» и «добрых») - такие обмены не устраняют различий в поведении, выработанных в ходе отбора (A. V. Kukekova et al., 2008. Measurement of segregating behaviors in experimental silver fox pedigrees). А в недавней работе ученые выявили большое количество генетических локусов, ассоциированных с 98 поведенческими критериями-признаками, и показали, что эти ассоциации осложняются эпистатическими влияниями, зависящими от комбинаторики аллельных вариантов (H. M. Rando et al., 2018. Construction of Red Fox Chromosomal Fragments from the Short-Read Genome Assembly).

Во всей этой истории есть кое-что замечательное: эксперимент был начат тогда, когда технологии молекулярных исследований были еще очень примитивными. Сделать полноценную проверку тех или иных гипотез было невозможно. Но эксперимент благодаря Людмиле Николаевне Трут и другим сотрудникам Института цитологии и генетики СО РАН продолжился даже после смерти Беляева в 1985 году и продолжается до сих пор. На протяжении всех этих лет эксперимент приносил плоды в виде регулярных публикаций, неизменно привлекающих внимание не только российских, но и зарубежных специалистов, работающих в области генетики, биологии развития и эволюционной биологии. С приходом новых технологий секвенирования, которые с каждым годом становятся все более эффективными и доступными, ученые получили возможность исследовать молекулярно-генетическую основу наблюдаемых фенотипических изменений у животных. И это, конечно же, было проделано. Расширению исследования благоприятствовало и налаженное с 2011 года сотрудничество с зарубежными лабораториями.

На протяжении 2018 года в рамках этого исследования было опубликовано целых три статьи в ведущих научных журналах. О представленных в этих работах результатах мы и расскажем ниже.

Татьяна Романовская

Теперь давайте решим несколько задач.

Задача 1.

Вычислите частоту носителей рецессивного аллеля гена, вызывающего сахарный диабет, если известно, что заболевание встречается с частотой 1 на 200. (Ответ: частота гетерозиготного генотипа 1 на 7,7)

g (aa)=1/200 g (a)= корень из 1/200=0,07 р (А)=1-0,07=0,93

значит частота гетерозигот 2рg (Аа)=2*0,93*0,07= 0,13 или 13%

Тогда: 200чел – 100%

Х чел. – 13% х=26 чел. Являются носителями рецессивного гена, вызывающего сахарный диабет.

Частота гетерозиготного генотипа 200:26=7,7 (один на 7,7)

Почему же мы не наблюдаем большой встречаемости этого заболевания. Возможно, этот ген в гомозиготном состоянии не проявляется у всех имеющих его особей. Это явление называется пенетрантностью. Пенетрантность 50% означает, что фенотипически ген проявляется только у половины имеющих его особей.

Задача 2.

В Европе на 10 000 человек с нормальным содержанием меланина встречается 1 альбинос. Ген альбинизма наследуется по аутосомно-рецессивному типу. Рассчитать частоту встречаемости носителей гена альбинизма.

Носителем называют организм, гетерозиготный по гену, который может вызвать в гомозиготном состоянии нарушение метаболизма.

Решение:

g2(аа) =1/10 000 g(а) =√1/10 000 = 0,01 р(А) = 1- 0,01 = 0,99

значит частота гетерозигот 2рg (Аа)=2 * 0,99 * 0,01=0,0198 или почти 2%,то есть на 50 человек приходится 1 носитель гена альбинизма.

Х - 2% х=200 чел. Являются гетерозиготными по гену альбинизма.

Тогда 10000:200=50, т.е. на 50 человек приходится 1 альбинос.

Задача 3.

Галактоземия (неусваиваемость молочного сахара) наследуется по аутосомно – рецессивному типу, встречается с частотой 1 на 40 000. Рассчитать частоту встречаемости носителей гена галактоземии.

Решение:

g (aa)=1/40000=0,000025 g (a)=корень из 1/40000=0,005

р (А) =1-0,005=0,995, значит частота гетерозигот 2pg=2*0,005*0,995=0,00995 или 1%

Тогда: 40000-100%

Х - 1% х=400 человек являются носителями гена галактоземии или 40000:400=100, т.е. частота гетерозиготного генотипа 1 на 100.

Какое практическое значение имеют данные расчеты? (можно заранее подготовиться к возможным изменениям)

Какие же следствия вытекают из уравнения Харди-Вайнберга?

1. Значительная доля имеющихся в популяции рецессивных аллелей находится у гетерозиготных особей.

2. Гетерозиготные генотипы являются важным потенциальным источником генетической изменчивости.

3. В каждом поколении из популяции может элиминироваться (т.е. гибель отдельных особей или целых групп организмов (популяций, видов) в результате различных естественных причин) лишь очень малая доля рецессивных аллелей, находящихся в гомозиготном состоянии.

Многие рецессивные аллели элиминируются из популяции потому, что они неблагоприятны для фенотипа (обуславливают гибель до рождения или неспособность к размножению – «генетическая смерть»).

Но не все рецессивные аллели неблагоприятны для популяции. Например, в ряде областей распространено наследственной заболевание серповидноклеточная анемия. Гомозиготные особи обычно умирают, не достигнув половой зрелости, элиминируя при этом по 2 рецессивных аллеля. Геторозиготы не гибнут. Установлено, что во многих частях земного шара частота этого аллеля остается относительно постоянной, а частота гетерозиготного фенотипа достигает 40%. Оказалось, что высокие частоты гетерозигот наблюдаются в районах неблагополучных по малярии. Гетерозиготы устойчивы к малярии. Например, в малярийных районах Северной Африки частота аллеля серповидноклеточности поддерживается на уровне 10-20%. А у негров Северной Америки она упала до 5%. Отсутствие в Северной Америке малярии устранило селективное, то есть отбирающее, действие среды; в результате рецессивный аллель медленно устраняется из популяции.

Этот пример ясно иллюстрирует селективное влияние среды на частоту аллелей – механизм, нарушающий генетическое равновесие, предсказываемое законом Харди-Вайнберга.

Несмотря на известные ограничения, по формуле Харди- Вайнберга можно рассчитать структуру популяции и определить частоты гетерозигот (например, по летальным или сублетальным генам, зная частоты гомозигот по рецессивным признакам и частоты особей с доминантным признаком), проанализировать сдвиги в генных частотаъх по конкретным признакам в результате отбора, мутаций и других факторов.

Популяция находится в равновесии только тогда, когда в ней не происходит отбора. При выбраковке же отдельных животных в такой популяции изменяется соотношение гамет, что влияет на генетическую структуру следующего поколения. Однако К. Пирсон показал, что, как только возникает состояние панмиксии (свободное скрещивание), соотношение генотипов и фенотипов в популяции в следующем поколении возвращается к тому, которое соответствует формуле Харди- Вайнберга, но уже при другом соотношении. Скрещивание, восстанавливающее соотношение генотипов в популяции, в соответствии с формулой Харди- Вайнберга получило название стабилизирующего.Вывод: при использовании в популяции случайных неотобранных производителей или маток наблюдается стабилизация признаков продуктивности на одном уровне, и повышение продуктивности животных в такой ситуации невозможно. Точно так же при отсутствии браковки гетерозиготных носителей рецессивных аномалий частота проявления аномальных животных в популяции остается неизменной.

Практическое значение закона Харди–Вайнберга

В здравоохранении – позволяет оценить популяционный риск генетически обусловленных заболеваний, поскольку каждая популяция обладает собственным аллелофондом и, соответственно, разными частотами неблагоприятных аллелей. Зная частоты рождения детей с наследственными заболеваниями, можно рассчитать структуру аллелофонда. В то же время, зная частоты неблагоприятных аллелей, можно предсказать риск рождения больного ребенка. В селекции – позволяет выявить генетический потенциал исходного материала (природных популяций, а также сортов и пород народной селекции), поскольку разные сорта и породы характеризуются собственными аллелофондами, которые могутбыть рассчитаны с помощью закона Харди-Вайнберга. Если в исходном материале выявлена высокая частота требуемого аллеля, то можно ожидать быстрого получения желаемого результата при отборе. Если же частота требуемого аллеля низка, то нужно или искать другой исходный материал, или вводить требуемый аллель из других популяций (сортов и пород). В экологии – позволяет выявить влияние самых разнообразных факторов на популяции. Дело в том, что, оставаясь фенотипически однородной, популяция может существенно изменять свою генетическую структуру под воздействием ионизирующего излучения, электромагнитных полей и других неблагоприятных факторов. По отклонениям фактических частот генотипов от расчетных величин можно установить эффект действия экологических факторов. (При этом нужно строго соблюдать принцип единственного различия. Пусть изучается влияние содержания тяжелых металлов в почве на генетическую структуру популяций определенного вида растений. Тогда должны сравниваться две популяции, обитающие в крайне сходных условиях. Единственное различие в условиях обитания должно заключаться в различном содержании определенного металла в почве).

Урок имеет и большое нравственное значение. Просчитывая процент гетерозигот по некоторым редким наследственным аутосомно-рецессивным болезням, ученики обнаруживают, что количество носителей рецессивного гена неожиданно велико. При проведении анализа таблицы, приходят к выводу о бесполезности метода уничтожения гомозиготных рецессивов, лучше стараться не добавлять в окружающую среду новых мутагенов.

Вывод. «Даже полное устранение из популяции рецессивных гомозигот в каждом поколении не приводит к окончательному исчезновению их даже в сотом поколении, так как гетерозиготные особи являются постоянными поставщиками гомозиготных рецессивов».

Задача 4.

Кистозный фиброз поджелудочной железы встречается среди населения с частотой 1 на 2 000. Вычислите частоту носителей этого рецессивного гена.

Задача 5.

Врожденный вывих бедра наследуется доминантно, средняя пенетрантность 25%. Заболевание встречается с частотой 6 на 10 000. Определите число здоровых новорожденных. (Ответ: 99.76%)

1) g2 = 1/400 (частота гомозиготного генотипа по рецессивному аллелю);

2) частота рецессивного аллеля а будет равна:

g =, т.е. 1 часть (один аллель) из 20;

3) частота доминантного аллеля будет равна: 20 – 1 = 19;

4) состав популяции: (р + g)2 = р2 + 2рg + g2.

(19 + 1)2 = 192 АА + 2 х 19 Аа + 12 аа = 361 АА + 38 Аа + 1 аа.

Ответ: 361 АА: 38 Аа: 1 аа.

Задача 7.на дом.

В популяции беспородных собак г. Владивостока было найдено 245 коротконогих животных и 24 с ногами нормальной длины. Коротконогость у собак – доминантный признак (А), нормальная длина ног – рецессивный (а). Определите частоту аллелей А и а и генотипов АА, Аа и аа в данной популяции.

Решение

1) Общее количество собак – 245 + 24 = 269.

Генотип собак с ногами нормальной длины – аа, частоту аллеля а (в долях единицы) обозначаем буквой «g». Тогда частота генотипа аа = g2.

g2 = 24/269 = 0,092

Частота рецессивного аллеля:

2) Определяем частоту доминантного аллеля А, т.е. р:

р = 1 – g = 1 – 0,3 = 0,7

3) Определяем частоту генотипа АА, т.е. р2:

р2 = 0,72 = 0,49

4) Определяем частоту гетерозигот, то есть 2рg:

2рg = 2 х 0,7 х 0,3 = 0,42

5) Рассчитываем количество собак разных генотипов:

определяем сумму частот доминантных гомозигот и гетерозигот:

0,49 АА + 0,42 Аа = 0,91;

определяем количество собак с генотипом АА:

245 особей – 0,91

x особей – 0,49,

x = 132 особи;

определяем количество собак с генотипом Аа:

245 особей – 0,91

x особей – 0,42,

x = 113 особей

Ответ: 132 АА: 113 Аа: 24 аа

Задача 8.

В популяциях Европы из 20 000 человек один – альбинос. Определите генотипическую структуру популяции.

Решение:

1) Находим частоту рецессивных гомозигот (g2) в долях единицы:

g2 = 1/20 000 = 0,00005,

тогда частота рецессивного аллеля а составит:

2) Определяем частоту доминантного аллеля А:

р = 1 – 0,007 = 0,993

3) Определяем частоту генотипа АА, то есть р2:

р2 = 0,9932 = 0,986

4) Определяем частоту генотипа Аа, то есть 2рg:

2рg = 2 х 0,993 х 0,007 = 0,014

5) Расписываем генотипическую структуру популяции европейцев:

0,986 АА: 0,014 Аа: 0,00005 аа,

0,986 АА =98,6%: 0,014 Аа=1,4% : 0,00005 аа=0,005% или в расчете на 20 000 человек:

100%-20000 =19720:

100%- 2000 -----280

100%- 2000 получили 1

В пределах генофонда популяции доля генотипов, содержащих разные аллели одного гена; при соблюдении некоторых условий из поколения в поколение не изменяется. Эти условия описываются основным законом популяционной генетики, сформулированным в 1908 г. английским математиком Дж. Харди и немецким врачом-генетиком Г. Вайнбергом. «В популяции из бесконечно большого числа свободно скрещивающихся особей в отсутствие мутаций, избирательной миграции организмов с различными генотипами и давления естественного отбора первоначальные частоты аллелей сохраняются из поколения в поколение».

Уравнение Харди-Вайнберга в решении генетических задач

Хорошо известно, что этот закон применим лишь для идеальных популяций: достаточно высокая численность особей в популяции; популяция должна быть панмиксной, когда нет ограничения к свободному выбору полового партнера; практически должно отсутствовать мутирование изучаемого признака; отсутствует приток и отток генов и нет естественного отбора.

Закон Харди-Вайнберга формулируется следующим образом:

в идеальной популяции соотношение частот аллелей генов и генотипов из поколения в поколение является величиной постоянной и соответствует уравнению:


p 2 +2pq + q 2 = 1

Где p 2 — доля гомозигот по одному из аллелей; p — частота этого аллеля; q 2 — доля гомозигот по альтернативному аллелю; q — частота соответствующего аллеля; 2pq — доля гетерозигот.

Что значит “соотношение частот аллелей генов” и “соотношение генотипов” - величины постоянные? Чему равны эти величины?

Пусть частота встречаемости какого-либо гена в доминантном состоянии (А) равна p, а рецессивного аллеля (а) этого же гена равна q (можно и наоборот, а можно и вообще одной буквой, выразив одно обозначение из другого) и понимая, что сумма частот доминантного и рецессивного аллелей одного гена в популяции равна 1, мы получим первое уравнение:

1) p + q = 1

Откуда берется само уравнение Харди-Вайнберга? Вы помните, что при моногибридном скрещивании гетерозиготных организмов с генотипами Аа х Аа по второму закону Менделя в потомстве мы будем наблюдать появление разных генотипов в соотношении 1АА: 2 Аа: 1аа .

Поскольку частота встречаемости доминантного аллельного гена А у нас обозначена буквой р, а рецессивного аллеля а буквой q, то сумма частот встречаемости самих генотипов организмов (АА, 2Аа и аа), имеющих эти же аллельны гены А и а, будет тоже равна 1 , то:

2) p 2 AA + 2pqAa + q 2 aa = 1

В задачах по популяционной генетике, как правило, требуется:
а) найти частоты встречаемости каждого из аллельных генов по известному соотношению частот генотипов особей;

Б) или наоборот, найти частоту встречаемости какого-либо из генотипов особей по известной частоте встречаемости доминантного или рецессивного аллеля изучаемого признака.

Так вот, подставляя известное значение частоты встречаемости какого-то из аллелей гена в первую формулу и найдя значение частоты встречаемости второго аллеля, мы всегда сможем по уравнению Харди-Вайнберга найти частоты встречаемости самих различных генотипов потомства.

Обычно некоторые действия (из-за их очевидности) решаются в уме. Но, чтобы было ясно то, что и так очевидно, надо хорошо понимать, что собой представляют буквенные обозначения в формуле Харди-Вайнберга.

Положения закона Харди-Вайнберга применимы и к множественным аллелям. Так, если аутосомный ген представлен тремя аллелями (А, а1 и а2), то формулы закона приобретают следующий вид:

РА + qа1 + ra2 = 1;

Р 2 АА+ q 2 а1а1 + r 2 а2а2 + 2рqАа1 + 2рrАа2 + 2qrа1а2 = 1 .

«В популяции из бесконечно большого числа свободно скрещивающихся особей в отсутствие мутаций, избирательной миграции организмов с различными генотипами и давления естественного отбора первоначальные частоты аллелей сохраняются из поколения в поколение».

Допустим, что в генофонде популяции, удовлетворяющей описанным условиям, некий ген представлен аллелями А 1 и А 2 , обнаруживаемыми с частотой р и q . Так как других аллелей в данном генофонде не встречается, то р+q = 1. При этом q = 1—р.

Соответственно особи данной популяции образуют р гамет с аллелемА 1 и q гамет с аллелем А 2 . Если скрещивания происходят случайным образом, то доля половых клеток, соединяющихся с гаметамиА 1 , равна р, а доля половых клеток, соединяющихся с гаметами A 2 , — q. Возникающее в результате описанного цикла размножения поколение F 1 образовано генотипами A l A 1 , A 1 A 2 , A 2 A 2 , количество которых соотносится как (р + q) (р + q) = р 2 + 2pq + q 2 (рис. 10.2). По достижении половой зрелости особи AlAi и АгА2 образуют по одному типу гамет — A 1 или A 2 — с частотой, пропорциональной числу организмов указанных генотипов (р и q). Особи A 1 A 2 образуют оба типа гамет с равной частотой 2pq /2.


Рис. Закономерное распределение генотипов в ряду поколений в зависимости от частоты образования гамет разных типов (закон Харди—Вайнберга)

Таким образом, доля гаметA 1 в поколенииF 1 составит р 2 + 2pq/2 = р 2 + р(1—р) = p, а доля гамет А 2 будет равна q 2 + 2pq/2 = q 2 + + q (l -q ) = q .

Так как частоты гамет с разными аллелями в поколенииfi в сравнении с родительским поколением не изменены, поколение F 2 будет представлено организмами с генотипами A l A 1 , A 1 A 2 и А 2 А 2 в том же соотношении р 2 + 2pq + q 2 . Благодаря этому очередной цикл размножения произойдет при наличии р гаметA 1 и q гамет А 2 . Аналогичные расчеты можно провести для локусов с любым числом аллелей. В основе сохранения частот аллелей лежат статистические закономерности случайных событий в больших выборках.

Уравнение Харди—Вайнберга в том виде, в котором оно рассмотрено выше, справедливо для аутосомных генов. Для генов, сцепленных с полом, равновесные частоты генотипов A l A 1 , A 1 A 2 и А 2 А 2 совпадают с таковыми для аутосомных генов: р 2 + 2pq + q 2 . Для самцов (в случае гетерогаметного пола) в силу их гемизиготности возможны лишь два генотипаA 1 — или А 2 —, которые воспроизводятся с частотой, равной частоте соответствующих аллелей у самок в предшествующем поколении: р и q. Из этого следует, что фенотипы, определяемые рецессивными аллелями сцепленных с хромосомой Х генов, у самцов встречаются чаще, чем у самок.

Так, при частоте аллеля гемофилии, равной 0,0001, это заболевание у мужчин данной популяции наблюдается в 10 000 раз чаще, чем у женщин (1 на 10 тыс. у первых и 1 на 100 млн. у вторых).

Еще одно следствие общего порядка заключается в том, что в случае неравенства частоты аллеля у самцов и самок разность между частотами в следующем поколении уменьшается вдвое, причем меняется знак этой разницы. Обычно требуется несколько поколений для того, чтобы возникло равновесное состояние частот у обоих полов. Указанное состояние для аутосомных генов достигается за одно поколение.

Закон Харди — Вайнберга описывает условия генетической стабильности популяции. Популяцию, генофонд которой не изменяется в ряду поколений, называют менделевской. Генетическая стабильность менделевских популяций ставит их вне процесса эволюции, так как в таких условиях приостанавливается действие естественного отбора. Выделение менделевских популяций имеет чисто теоретическое значение. В природе эти популяции не встречаются. В законе Харди — Вайнберга перечислены условия, закономерно изменяющие генофонды популяций. К указанному результату приводят, например, факторы, ограничивающие свободное скрещивание (панмиксию), такие, как конечная численность организмов в популяции, изоляционные барьеры, препятствующие случайному подбору брачных пар. Генетическая инертность преодолевается также благодаря мутациям, притоку в популяцию или оттоку из нее особей с определенными генотипами, отбору.

Примеры решений некоторых заданий с применением уравнения Харди-Вайнберга.


Задача 1. В популяции человека количество индивидуумов с карим цветом глаз составляет 51%, а с голубым - 49%. Определите процент доминантных гомозигот в данной популяции.

Сложность решения подобных заданий в их кажущейся простоте. Раз так мало данных, то и решение должно быть как-будто очень короткое. Оказывается не очень.

По условию подобного рода заданий нам, как правило, дается информация об общем количестве фенотипов особей в популяции. Поскольку фенотипы особей в популяции с доминантными признаками могут быть представлены как гомозиготными по генотипу особями АА, так и гетерозиготными Аа, то для определения частот встречаемости каких-то конкретных генотипов особей в этой популяции, необходимо предварительно вычислить частоты встречаемости аллелей гена А и а по отдельности.

Как мы должны рассуждать при решении этой задачи?

Поскольку известно, что карий цвет глаз доминирует над голубым, обозначим аллель, отвечающий за проявление признака кареглазости А, а аллельный ему ген, ответственный за проявление голубых глаз, соответственно, а. Тогда кареглазыми в исследуемой популяции будут люди как с генотипом АА (доминантные гомозиготы, долю которых и надо найти по условию задачи), так и - Аа гетерозиготы), а голубоглазыми - только аа (рецессивные гомозиготы).

По условию задачи нам известно, что количество людей с генотипами АА и Аа составляет 51%, а количество людей с генотипом аа - 49%. Как, исходя из этих статистических данных (большая выборка должна быть, репрезентативная), можно вычислить процент кареглазых людей только с генотипом АА?

Для этого вычислим частоты встречаемости каждого из аллельных генов А и а в данной популяции людей. Закон Харди-Вайнберга, применяемый для больших свободно скрещивающихся популяций, как раз и позволит нам сделать это.

Обозначив частоту встречаемости аллеля А в данной популяции буквой q, имеем частоту встречаемости аллельного ему гена а = 1 - q. (Можно было бы обозначить частоту встречаемости аллельного гена а отдельной буквой, как в тексте выше - это кому как удобнее). Тогда сама формула Харди-Вайнберга для расчета частот генотипов при моногибридном скрещивании при полном доминировании одного аллельного гена над другим будет выглядеть вот так:

q 2 AA+ 2q(1 - q)Aa + (1 - q) 2 aa = 1.

Ну, а теперь уже все просто, вы наверняка все догадались, что в этом уравнении нам известно, а что следует найти?

(1 - q) 2 = 0,49 - это частота встречаемости людей с голубыми глазами.

Находим значение q: 1 - q = корень квадратный из 0,49 = 0,7; q = 1 - 0,7 = 0,3, тогда q2 = 0,09.
Это значит, что частота кареглазых гомозиготных особей АА в данной популяции будет составлять 0,09 или доля их будет равна 9% .

Задача 2. У клевера лугового поздняя спелость доминирует над скороспелостью и наследуется моногено. При апробации установлено, что 4% растений относятся к раннеспелому типу клевера, какую часть от позднеспелых растений составляют гетерозиготы?

В данном контексте апробация означает оценку чистоты сорта . А что, разве сортом не является чистая линия как сорта гороха у Менделя, например. Теоретически “да”, но на практике (поля то большие - это не опытные делянки гениального Менделя) в каждом производственном сорте могут находиться в каком-то количестве и “мусорные” аллели генов.

В данном случае с позднеспелым сортом клевера, если бы сорт был чистым, присутствовали бы только растения с генотипом АА. Но сорт оказался на момент проверки (апробации) не очень чистым, так как 4% особей составляли раннеспелые растения с генотипом аа. Значит в этот сорт “затесались” аллели а.

Так вот, раз они “затесались”, то в данном сорте должны присутствовать и особи, хотя по фенотипу и позднеспелые, но гетерозиготные с генотипом Аа - их количество нам и надо определить?

По условию задачи 4% особей с генотипом аа составят 0,04 часть от всего сорта. Фактически это q 2 , значит частота встречаемости рецессивного аллеля а равна q = 0,2. Тогда частота встречаемости доминантного аллеля А равна p = 1 - 0,2 = 0,8.

Отсюда количество позднеспелых гомозигот p2 = 0,64 или 64%. Тогда количество гетерозигот Аа будет составлять 100% - 4% - 64% = 32%. Поскольку всего позднеспелых растений 96%, то доля гетерозигот среди них составит: 32 х 100: 96 = 33,3% .


Задача 3. С применением формулы Харди-Вайнберга при неполном доминировании

При обследовании популяции каракульских овец было выявлено 729 длинноухих особей (АА), 111 короткоухих (Аа) и 4 безухих (аа). Вычислите наблюдаемые частоты фенотипов, частоты аллелей, ожидаемые частоты генотипов по формуле Харди-Вайнберга.

Это задача по неполному доминированию, поэтому, распределение частот генотипов и фенотипов совпадают и их можно было бы определить, исходя из имеющихся данных. Для этого надо просто найти сумму всех особей популяции (она равна 844), найти долю длинноухих, короткоухих и безухих сначала в процентах (86.37, 13.15 и 0.47, соответственно) и в долях частот (0.8637, 0.1315 и 0.00474).

Но в задании сказано применить для расчетов генотипов и фенотипов формулу Харди-Вайнберга и, к тому же, рассчитать частоты аллелей генов А и а. Так вот для расчета самих частот аллелей генов без формулы Харди-Вайнберга не обойтись.

Обратите внимание, что в этой задаче, в отличие от предыдущей, для обозначения частот аллельных генов, мы будем пользоваться приемом обозначений не как в первой задаче, а как разбиралось выше в тексте. Понятно, что результат от этого не изменится, но вы будете в праве в будущем использовать любой из этих способов обозначений, какой вам кажется более удобным для понимания и проведения самих расчетов.

Обозначим частоту встречаемости аллеля А во всех гаметах популяции овец буквой р, а частоту встречаемости аллеля а - буквой q. Помним, что сумма частот аллельных генов p + q = 1.

Так как по формуле Харди-Вайнберга p 2 AA + 2pqAa + q 2 aa = 1 имеем, что частота встречаемости безухих q2 равна 0.00474, то извлекая квадратный корень из числа 0.00474 мы находим частоту встречаемости рецессивного аллеля а. Она равна 0.06884.

Отсюда мы можем найти частоту встречаемости и доминантного аллеля А. Она равна 1 - 0.06884 = 0.93116.

Теперь по формуле можем вычислить снова частоты встречаемости длинноухих (АА), безухих (аа) и короткоухих (Аа) особей. Длинноухих с генотипом АА будет р 2 = 0.931162 = 0.86706, безухих с генотипом аа будет q 2 = 0.00474 и короткоухих с генотипом Аа будет 2pq = 0,12820. (Вновь полученные числа, рассчитанные по формуле, почти совпадают с вычисленными изначально, что говорит о справедливости закона Харди-Вайнберга) .

Задача 4. Почему доля альбиносов в популяциях так мала

В выборке, состоящей из 84 000 растений ржи, 210 растений оказались альбиносами, т.к. у них рецессивные гены находятся в гомозиготном состоянии. Определите частоты аллелей А и а, а также частоту гетерозиготных растений.

Обозначим частоту встречаемости доминантного аллельного гена А буквой p, а рецессивного а - буквой q. Тогда, что нам может дать формула Харди-Вайнберга p 2 AA + 2pqAa + q 2 aa = 1 для применения её к этой задаче?

Поскольку общая численность всех особей данной популяции ржи нам известна 84000 растений, а в частях это и есть 1, то доля гомозиготных альбиносных особей с генотипом аа равная q2, которых всего 210 штук, составит q2 = 210: 84000 = 0,0025, тогда q = 0,05; p = 1 - q = 0,95 и тогда 2pq = 0,095.

Ответ: частота аллеля а - 0,05; частота аллеля А - 0,95; частота гетерозиготных растений с генотипом Аа составит 0,095 .

Задача 5. Выращивали кроликов шиншилл, а получили брак в виде альбиносиков

У кроликов окраска волосяного покрова “шиншилла” (ген Cch) доминирует над альбинизмом (ген Ca). Гетерозиготы CchCa имеют светло-серую окраску. На кролиководческой ферме среди молодняка кроликов шиншилл появились альбиносы. Из 5400 крольчат 17 оказались альбиносами. Пользуясь формулой Харди-Вайнберга, определите, сколько было получено гомозиготных крольчат с окраской шиншилла.

А как Вы думаете, полученная выборка в популяции кроликов в количестве 5400 экземпляров, может позволить нам использовать формулу Харди-Вайнберга? Да выборка значительная, популяция изолированная (кролиководческая ферма) и действительно можно применить в расчетах формулу Харди-Вайнберга.Чтобы правильно её использовать, надо четко представлять что нам дано, а что требуется найти.

Лишь для удобства оформления, обозначим генотип шиншилл АА (количество их нам и надо будет определить), генотип альбиносиков аа, тогда генотип гетерозиготных серячков будет обозначаться Аа.

Если “сложить” всех кроликов с разными генотипами в изучаемой популяции: АА + Аа + аа, то это и будет в сумме 5400 штук особей.
Да еще нам известно, что кроликов с генотипом аа было 17 штук. Как же нам теперь, не зная сколько было гетерозиготных серых кроликов с генотипом Аа, определить сколько в этой популяции шиншилл с генотипом АА?

Как мы можем видеть эта задача является почти “копией” первой, только там нам даны были результаты подсчетов в популяции людей кареглазых и голубоглазых индивидов в %, а здесь фактически нам известна сама численность альбиносов кроликов 17 штук и всех гомозиготных шиншилл и гетерозиготных серячков в сумме: 5400 - 17 = 5383 штук.

Примем 5400 штук всех кроликов за 100%, тогда 5383 кролика (сумма генотипов АА и Аа) составит 99,685% или в частях это будет 0,99685.

Q 2 + 2q(1 - q) = 0,99685 - это частота встречаемости всех шиншилл и гомозиготных (АА), и гетерозиготных (Аа).

Тогда из уравнения Харди-Вайнберга: q2 AA+ 2q(1 - q)Aa + (1 - q)2aa = 1 , находим

(1 - q) 2 = 1 - 0,99685 = 0,00315 - это частота встречаемости альбиносных кроликов с генотипом аа. Находим чему равна величина 1 - q. Это корень квадратный из 0,00315 = 0,056. А q тогда равняется 0,944.

Q 2 равняется 0,891, а это и есть доля гомозиготных шиншил с генотипом АА. Так как эта величина в % составит 89,1% от 5400 особей, то количество гомозиготных шиншилл будет 4811 шт .

Задача 6. Определение частоты встречаемости гетерозиготных особей по известной частоте встречаемости рецессивных гомозигот

Одна из форм глюкозурии наследуется как аутосомно-рецессивный признак и встречается с частотой 7:1000000. Определить частоту встречаемости гетерозигот в популяции.

Обозначим аллельный ген, отвечающий за проявление глюкозурии а, так как сказано, что это заболевание наследуется как рецессивный признак. Тогда аллельный ему доминантный ген, отвечающий за отсутствие болезни обозначим А.

Здоровые особи в популяции людей имеют генотипы АА и Аа; больные особи имеют генотип только аа.

Обозначим частоту встречаемости рецессивного аллеля а буквой q, а доминантного аллеля А - буквой р.

Поскольку нам известно, что частота встречаемости больных людей с генотипом аа (а это значит q 2) равна 0,000007, то q = 0,00264575

Так как p + q = 1, то р = 1 — q = 0,9973543, и p2 = 0,9947155

Теперь подставив значения р и q в формулу:

P2AA + 2pqAa + q2aa = 1,

Найдем частоту встречаемости гетерозиготных особей 2pq в популяции людей:

2pq = 1 - p 2 — q 2 = 1 - 0,9947155 - 0,000007 = 0,0052775 .

Задача 7. Как и предыдущая задача, но про альбинизм

Альбинизм общий (молочно-белая окраска кожи, отсутствие меланина в коже, волосяных луковицах и эпителии сетчатки) наследуется как рецессивный аутосомный признак. Заболевание встречается с частотой 1: 20 000 (К. Штерн, 1965). Определите процент гетерозиготных носителей гена.

Так как этот признак рецессивный, то больные организмы будут иметь генотип аа — это их частота равна 1: 20 000 или 0,00005.

Частота аллеля а составит корень квадратный из этого числа, то есть 0,0071. Частота аллеля А составит 1 — 0,0071 = 0,9929, а частота здоровых гомозигот АА будет 0,9859.

Частота всех гетерозигот 2Аа = 1 — (АА + аа) = 0,014 или 1,4% .

Задача 8. Кажется, как все просто, когда знаешь как решать

Популяция европейцев по системе групп крови резус содержит 85% резус положительных индивидуумов. Определите насыщенность популяции рецессивным аллелем.

Нам известно, что аллельный ген, отвечающий за проявление резус положительной крови является доминантным R (обозначим частоту его встречаемости буквой p), а резус отрицательный - рецессивным r (обозначим частоту встречаемости его буквой q).

Поскольку в задаче сказано, что на долю p 2 RR + 2pqRr приходится 85% людей, значит на долю резус-отрицательных фенотипов q 2 rr будет приходиться 15% или частота встречаемости их составит 0,15 от всех людей европейской популяции.

Тогда частота встречаемости аллеля r или ”насыщенность популяции рецессивным аллелем” (обозначенная буквой q) составит корень квадратный из 0,15 = 0,39 или 39%.

Задача 9. Главное знать что такое пенетрантность

Врожденный вывих бедра наследуется доминантно. Средняя пенетрантность составляет 25%. Заболевание встречаются с частотой 6:10000. Определите число гомозиготных особей в популяции по рецессивному признаку.

Пенетрантность - это количественный показатель фенотипической изменчивости проявления гена .

Пенетрантность измеряется в процентном отношении числа особей, у которых данный ген проявился в фенотипе к общему числу особей, в генотипе которых этот ген присутствует в необходимом для его проявления состоянии (гомозиготном — в случае рецессивных генов или гетерозиготном — в случае доминантных генов). Проявление гена у 100% особей с соответствующим генотипом называется полной пенетрантностью, а в остальных случаях — неполной пенетрантностью.

За изучаемый признак отвечает доминантный аллель, обозначим его А. Значит организмы, имеющие данное заболевание имеют генотипы АА и Аа.

Известно, что фенотипически вывих бедра выявляется у 6 организмов из всей популяции (10000 обследованных), но это лишь одна четвертая часть из всех людей, реально имеющих генотипы АА и Аа (так как сказано, что пенетрантность составляет 25%).

Значит на самом деле людей с генотипами АА и Аа в 4 раза больше, то есть 24 из 10000 или 0,0024 часть. Тогда людей с генотипом аа будет 1 - 0,0024 = 0,9976 часть или 9976 человек из 10000.

Задача 10. Если болеют только мужчины

Подагра встречается у 2% людей и обусловлена аутосомным доминантным геном. У женщин ген подагры не проявляется, у мужчин пенетрантность его равна 20% (В.П. Эфроимсон, 1968). Определите генетическую структуру популяции по анализируемому признаку, исходя из этих данных.

Так как подагра выявляется у 2% мужчин, то есть у 2 человек из 100 с пенетрантностью 20%, то реально носителями генов подагры является в 5 раз больше мужчин, то есть 10 человек из 100.

Но, так как мужчины составляют лишь пол популяции, то всего людей с генотипами АА + 2Аа в популяции будет 5 человек из 100, а, значит, 95 из 100 будут с генотипом аа.

Если частота встречаемости организмов с генотипами аа составляет 0,95, то частота встречаемости рецессивного аллеля а в этой популяции равна корню квадратному из числа 0,95 = 0,975. Тогда частота встречаемости доминантного аллеля ”А” в этой популяции равна 1 - 0,975 = 0,005 .

Задача 11. Как мало людей устойчивых к ВИЧ инфекции

Устойчивость к ВИЧ-инфекции связана с наличием в генотипе некоторых рецессивных генов, например, ССR и SRF. Частота рецессивного аллеля ССR-5 в русской популяции составляет 0,25%, а аллеля SRF - 0,05%. В казахской популяции частота этих аллелей соответственно - 0,12% и 0,1%. Рассчитайте частоты организмов, имеющих повышенную устойчивость к ВИЧ-инфекции, в каждой из популяций.

Понятно, что повышенной устойчивостью к ВИЧ-инфекции будут обладать лишь гомозиготные организмы с генотипами аа. Организмы же с генотипами АА (гомозиготы) или Аа (гетерозиготы) не устойчивы к ВИЧ инфекции.

В русской популяции устойчивых организмов по аллельному гену ССR будет О,25% в квадрате = 0,0625%, а по аллельному гену SRF 0,05% в квадрате = 0,0025%.

В казахской популяции устойчивых организмов по аллельному гену ССR будет О,12% в квадрате = 0,0144%, а по аллельному гену SRF 0,1% в квадрате = 0,01%.

Одно из важнейших применений закона Харди-Вайнберга состоит в том, что он дает возможность рассчитать некоторые из частот генов и генотипов в том случае, когда не все генотипы могут быть идентифицированы вследствии доминантности некоторых аллелей.

Пример 1: альбинизм у человека обусловлен редким рецессивным геном. Если аллель нормальной пигментации обозначить А, а аллель альбинизма а, то генотип альбиносов будет аа, а генотипы нормально пигментированных людей – АА и Аа. Предположим, что в популяции людей (Европейской части) частота альбиносов составляет 1 на 10000. Согласно закону Харди-Вайнберга, в данной популяции частота гомозигот q 2 аа=1:10000=0,0001 (0,1%), а частота рецессивных гомозигот =0,01. Частота доминантного аллеля рА=1-qa=1-0,01=0,99. Частота нормально пигментированных людей составляет р 2 АА=0,99 2 =0,98(98%), а частота гетерозигот 2pqАа=2×0,99×0,1=0,198(1,98%).

Важное следствие из закона Харди-Вайнберга состоит в том, что редкие аллели присутствуют в популяции главным образом в гетерозиготном состоянии. Рассмотрим приведенный пример с альбинизмом (генотип аа). Частота альбиносов равна 0,0001, а гетерозигот Аа 0,00198. Частота рецессивного аллеля у гетерозигот составляет половину частоты гетерозигот, т.е. 0,0099. Следовательно, в гетерозиготном состоянии содержится примерно в 100 раз больше рецессивных аллелей, чем в гомозиготном состоянии. Таким образом, чем ниже частота рецессивного аллеля, тем большая доля этого аллеля присутствует в популяции в гетерозиготном состоянии.

Пример 2: частота фенилкетонурии (ФКУ) в популяции составляет 1:10000, ФКУ – аутосомно-рецессивное заболевание, следовательно индивидуумы с генотипами АА и Аа – здоровы, с генотипами аа – больны ФКУ.

Популяция, следовательно представлена генотипами в следующем соотношении:

p 2 AA+2pqAa+q 2 aa=1

Исходя их этих условий:

q 2 aa=1/10000=0,0001.

pA=1-qa=1-0,01=0,99

p 2 AA=0,99 2 =0,9801

2paAa=2×0,99×0,01=0,0198, или ~1,98% (2%)

Следовательно в данной популяции частота гетерозигот по гену ФКУ по изучаемой популяции составляет приблизительно 2%. Количество индивидумов с генотипом АА составляет 10000×0,9801=9801, количество индивидуумов с генотипом Аа (носителей) составляет 10000×0,0198=198 человек, т.к. относительные доли генотипов в этой популяции представлены соотношением 1(аа):198(Аа):980 (АА).

В том случае, если ген в генофонде представлен несколькими аллелями, например ген I группы крови системы АВ0, то соотношение различных генотипов выражается формулой ( и принцип Харди-Вайнберга остается в силе.

Например: среди Египтян встречаются группы крови в системе АВ0 в следующем процентном соотношении:

0(I) - 27,3%, A(II) - 38,5%, B(III) - 25,5%, AB(IV) - 8,7%

Определить частоту аллелей I 0 , I A , I B и разных генотипов в этой популяции.

При решении задачи можно воспользоваться формулами:

; ( ; , где А – частота группы крови А (II); 0 – частота группы крови 0(I); В – частота группы крови В(III).

Проверка: pI A +qI B +rI 0 =1 (0,52+0,28+0,20=1).

Для генов, сцепленных с полом, равновесие частоты Х А 1 Х А 1 , Х А 1 Х А 2 и Х А 2 Х А 2 совпадают с таковыми для аутосомных генов: p 2 +2pq +q 2 . Для самцов (в случае гетерогаметного пола) в силу гемизиготности возможны лишь два генотипа Х А 1 Y или Х А 2 Y, которые воспроизводятся с частотой равной частоте соответствующих аллелей у самок в предшествующем поколении: p и q. Из этого следует, что фенотипы, определяемые рецессивными аллелями сцепленных с Х-хромосомой, у самцов встречаются чаще, чем у самок. Так, при частоте аллеля гемофилии qa=0,0001, у мужчин заболевание встречается в 10000 раз чаще, чем у женщин (1/10000млн. у мужчин и 1/100млн. у женщин).

Для установления и подтверждения типа наследования заболеваний необходимо проверить соответствие сегрегации в отягощенных семьях заданной популяции менделеевским закономерностям. Методом c-квадрат подтверждает соответствие количества больных и здоровых сибсов для аутосомной патологии в семьях с полной регистрацией (через больных родителей).

Для расчета сегрегационной частоты можно использовать ряд методов: метод сибсов Вайнберга, пробандовый метод.

Задание 1.

Изучите конспект лекций и материал учебной литературы.

Задание 2.

Запишите в словарь и выучите основные термины и понятия: популяция, панмиксия, панмиксная популяция, генофонд, частота аллеля, частота фенотипа и генотипа в популяции, Закон Харди-Вайнбергера (его содержание), генетическая структура популяции, равновесие генетической структуры популяции в поколениях, мутационное давление, генетический груз, коэффициент отбора, популяционно-генетический анализ, факторы генетической динамики популяции, генетический дрейф, инбридинг, адаптационный коэффициент.

Задание 3.

Смоделируйте панмиксную популяцию и сделайте вывод о ее генетической структуре и о генетическом равновесии в ряду поколений (по заданию преподавателя), в двух вариантах, при s=0 и при s=-1®аа.

Гаметы условно представлены картонными кружочками. Кружок темного цвета обозначает гамету с доминантным аллелем А , белого – с рецессивным аллелем а . Каждая подгруппа получает по два мешочка, в которых по сто «гамет»: в одном – «яйцеклетки», в другом - «сперматозоиды»: например, А – 30 кружочков, а – 70 кружочков, всего – 100 сперматозоидов и также яйцеклеток. Один из студентов достает, не глядя, по одному кружочку («яйцеклетки»), другой аналогично достает кружки –«сперматозоиды», третий студент записывает полученную комбинацию генотипа в Таблицу 5, используя правило конвертов. Сочетание двух темных кружков означает АА , гомозиготу по доминанту; двух белых аа , гомозиготу по рецессиву; темный и белый – Аа , гетерозиготу. Так как сочетание кружков–гамет случайно, то имитируется процесс панмиксии .

Таблица 5. Число генотипов и частота аллелей в модельной популяции

Во втором варианте следует выполнять работу до тех пор, пока число генотипов не будет повторяться, что свидетельствует об установлении в популяции нового равновесного состояния.

При записи генотипов могут вкрадываться как случайные ошибки, так и отражаться закономерное изменение числа генотипа. Поэтому необходимо вычислить критерий χ 2 – критерий соответствия практически полученных данных теоретически ожидаемому.

Для этого определим теоретически ожидаемую частоту генотипов для заданного соотношения гамет. Например, если исходные гаметы: кружки А – 30, а –70; то по таблице Пеннета:

χ 2 факт. = Σd 2 /q =9:9+36:42+9:49=1 + 0,85 + 0,18 = 2,03 ; при n" =2 , при P =0,05

Сравнив методом χ 2 полученные результаты с теоретически ожидаемыми делаем вывод, что в данном случае полученное отношение не отличается от ожидаемого, так как χ 2 факт. < χ2 табличное 5,99. Следовательно, в I варианте в панмиксной популяции сохраняются первоначальные частоты аллелей (рА – 03 и qa – 0,3). Аналогичную работу проведите для I и II вариантов. Сделайте выводы.

Задание 4.

Решите следующие задачи:

1. Болезнь Тея-Сакса обусловлена аутосомным рецессивным аллелем. Характерные признаки этой болезни – отставание в умственном развитии и слепота, смерть наступает в возрасте около четырех лет. Частота заболевание среди новорожденных около десяти на 1 млн. Исходя из равновесия Харди-Вайнберга, рассчитайте частоты аллелей и гетерозигот.

2. Кистозный фиброз поджелудочной ткани (муковисцидоз ) – наследственная болезнь, обусловленная рецессивным аллелем; характеризуется плохим всасыванием в кишечнике и абструктивными изменениями в легких и других органах. Смерть наступает обычно в возрасте около 20 лет. Среди новорожденных кистозный фиброз случается в среднем у 4 на 10000. Исходя из равновесия Харди–Вайнберга, рассчитайте частоты всех трех генотипов у новорожденных, какой процент составляют гетерозиготные носители.

3. Акаталазия – заболевание, вызываемое рецессивным геном, впервые было обнаружено в Японии. У гетерозигот по этому гену наблюдается пониженное содержание каталазы в крови. Частота гетерозигот составляет 0,09% среди население Хиросимы и Нагасаки; и 1,4% среди остального населения Японии. Исходя из равновесия Гарди–Вайнберга, рассчитайте частоты аллелей и генотипов:

В Хиросиме и Нагасаки;

Среди остального населения Японии.

Задача 4. В таблице приведена частота аллелей, контролирующих группы крови системы АВ0, среди людей из 4 обследованных популяций. Определите частоту различных генотипов в каждой из указанных популяций.

Таблица 6. Частота аллелей, определяющих группы крови АВ0

5. В таблице приведена частота (в процентах) групп крови 0, А, В и АВ в 4 различных популяциях. Определите частоту соответствующих аллелей и разных генотипов в каждой из этих популяций.

Таблица 7. Частота групп крови АВ0

Задание 5.

Ответьте на вопросы для самопроверки:

1. Объясните, что нужно понимать под генетической и генотипической структурой популяции.

2. Какому закону подчиняется генетическая структура популяции, в чем его сущность.

3. Охарактеризуйте факторы динамических процессов в популяции.

4. Коэффициент отбора, его сущность.

5. Почему в близкородственных браках чаще проявляются наследственные заболевания?

6. В каких генотипах содержатся рецессивные аллели в популяциях.

Форма отчета:

Предоставление на проверку рабочей тетради;

Решение задач на определение генетической структуры популяции с использованием Закона Харди-Вайнберга;

Устная защита выполненной работы.

Статьи по теме